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Abstract

Accurate duct acoustic propagation models are required to characterize and subsequently reduce aircraft engine noise.

The boundary conditions for these models ultimately rely on accurate measurements of the acoustic impedance for

candidate nacelle liners. The standard two-microphone method is widely used to estimate acoustic impedance but does not

provide uncertainty estimates that are essential for data quality assessment and model validation. A systematic framework

is presented in this paper to propagate the experimental 95% confidence interval uncertainty estimates in the measured

quantities to the calculated acoustic impedance data using the two-microphone method for small and large input

uncertainties. One method is an analytical, small-perturbation technique using multivariate statistics. This method

provides useful analytical scaling information. A second Monte Carlo method is utilized to validate the analytical

multivariate method. Both methods are applied to the two-microphone method for simulated data representative of sound-

hard and sound-soft acoustic materials. The results indicate that for realistic experimental parameters, the uncertainty in

the input measurements results in nonlinear perturbations. Therefore, the small-perturbation technique fails and the

Monte Carlo method should be used to obtain uncertainty estimates. Furthermore, the nonlinear perturbations also distort

the output statistical distributions of the calculated acoustic impedance and reflection coefficient, which results in

significant deviation from Gaussian behavior. The distortion is a function of the acoustic impedance of the specimen itself.

Finally, the Monte Carlo method is applied to experimental data for a ceramic tubular specimen and compared to the

multivariate results to demonstrate the implementation and usefulness of the technique.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustic liners are widely used in turbofan engines to suppress engine noise. These liners provide an
acoustic impedance boundary condition for modes inside the engine duct [1]. Liner design requires
experimental verification of the acoustic properties of candidate configurations. The two-microphone method
is a popular standardized technique for determining the normal-incidence acoustic impedance of materials
[2–6]. In this method, a compression driver is mounted at one end of an acoustic waveguide or plane-wave
tube, and the test specimen is mounted at the other. Two microphones are flush-mounted in the duct wall at
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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two locations near the specimen to determine the incident and reflected waves. The microphone data are used
to estimate the complex reflection coefficient and corresponding acoustic impedance of the test specimen.

The process of designing the experiment requires an understanding of the frequency scaling of uncertainties
in microphone location, ambient temperature, etc. and how these contribute to the overall uncertainty in the
reflection coefficient and acoustic impedance. Current 1

5
th-scale aeroacoustic impedance testing requires a

frequency range of dc to 20 kHz [1]. Previous studies on the uncertainty of the two-microphone method have
discussed in detail specific error sources due to uncertainties in spectral estimates [7–9] and the microphone
spacing and locations [7,8,10] and have provided recommendations to minimize the respective error
component. Results on the propagation of component uncertainties to the calculated reflection factor and
acoustic impedance are provided in Refs. [7,8]. Authors of Refs. [7,8] use direct numerical simulations to study
the effects of the component error sources on the calculated quantities, the reflection factor and the
normalized acoustic impedance, but in Ref. [7] Åbom and Bodén also consider a linear Taylor-series
expansion for the reflection factor. However, these efforts did not provide a systematic method to propagate
the component uncertainties to the overall uncertainty in the acoustic impedance and reflection factor for
experimental data. The purpose of this paper is to provide a systematic framework to accomplish this task. In
particular, a frequency-dependent 95% confidence interval is estimated using both multivariate uncertainty
analysis and Monte Carlo methods. The multivariate uncertainty analysis is an analytical method that
assumes small uncertainties that cause only linear variations in the output quantities, but differs from classical
uncertainty methods by allowing multiple, possibly correlated, components to be tracked. As long as the data
reduction equation can be cast into a multivariate equation and the derivatives can be found, the multivariate
uncertainty method provides a convenient way to propagate the experimental uncertainty. The multivariate
technique is required because the measured data and the final output of the two-microphone method are
complex variables that are treated as bivariate variables. The input covariance matrix and Jacobian are
computed and propagated through the data reduction equation [11,12]. The multivariate method thus
provides analytical expressions that are used to extract important scaling information, while the Monte Carlo
simulations are used to account for the nonlinear perturbations of the input uncertainties observed in practice.

The paper is organized as follows. First, the two-microphone method is reviewed. A general procedure to
estimate the complex uncertainty using the multivariate method is outlined followed by a brief discussion of
the major error sources and their respective frequency scaling. The results of numerical simulations to
illustrate the relative advantages and disadvantages of the two-microphone method and the multivariate
method follow. Specifically, two impedance cases are presented, a sound-hard boundary that is representative
of a high-impedance sample, and an ‘‘ideal’’ impedance sample that is representative of an optimum
impedance for a ducted turbofan. Monte Carlo simulations are used to compare with the results of the
multivariate method. The paper concludes with the presentation of experimental data and corresponding
uncertainty estimates for a ceramic tubular specimen using the Monte Carlo and multivariate methods.

2. Two-microphone method fundamentals

A schematic of the experimental setup of the two-microphone method is given in Fig. 1. From the plane-
wave assumption, the sound field inside the waveguide is described by [13,14]

p0 ¼ Re Pi ej otþkdð Þ þ R ej ot�kdð Þ
� �� �

, (1)

where the ej otþkdð Þ term represents the incident waves, the ej ot�kdð Þ term represents the reflected waves, d is the
axial distance from the specimen surface, k is the wavenumber, Pi is the complex pressure amplitude of
the incident wave, o is the angular frequency, Re( ) denotes the real part of the argument, and R is the
complex reflection coefficient. When dissipation and dispersion are neglected for an ideal gas, the wavenumber
is given by

k ¼
o
c0

, (2)

where c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gRgasT

p
is the isentropic speed of sound, g is the ratio of specific heats, T is absolute temperature,

and Rgas is the ideal gas constant. To account for dissipation, a complex wavenumber can be used in which the
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Fig. 1. Schematic of the experimental setup for the two-microphone method.
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imaginary part corresponds to an attenuation coefficient, and the speed of sound is adjusted to account for
dispersion [13–15]. An expression for the reflection coefficient is obtained by taking the ratio of Eq. (1) for two
different axial locations and solving for R. There are two standards that provide different versions of the final
data reduction equation for the reflection coefficient: ASTM E1050-98 [2] and ISO 10534-2:1998 [4]. The main
difference between the two standards is the definition of the reference length, l. ISO 10534-2 defines l to be the
distance from the specimen to the microphone farthest away from the test specimen, while ASTM E1050
defines l to be the distance from the specimen to the nearest microphone. In the remainder of this paper the
latter definition will be used, namely

R ¼
Ĥ � e�jks

ejks � Ĥ
ej2kðlþsÞ, (3)

where Ĥ ¼ E½Ĝ12=Ĝ11� is the estimated frequency response function between the two microphones, E[ ] is the
expectation operator, Ĝ12 is the estimated cross spectral density, Ĝ11 is the estimated autospectral density,
and s is the spacing between the microphones [16]. The normalized complex acoustic impedance is computed
from R

x ¼ yþ jw ¼
Z1

Z0
¼

1þ R

1� R
, (4)

where y and w are the normalized resistance and reactance, respectively, Z0 is the characteristic impedance of
the medium and Z1 is specific acoustic impedance of the test specimen. Since R and x are complex quantities
that are functions of another complex variable Ĥ, the multivariate uncertainty analysis method is used to
propagate the uncertainty. To employ the multivariate method, the data reduction equations given in Eqs. (3)
and (4) must be separated into the real and imaginary parts denoted by the subscripts R and I, respectively.
For R,

RR

RI

" #
¼

2ĤR cos k 2l þ sð Þð Þ � cos 2klð Þ � Ĥ
2

R þ Ĥ
2

I

� �
cos 2k l þ sð Þð Þ

1þ Ĥ
2

R þ Ĥ
2

I � 2ĤR cos ksð Þ � 2ĤI sin ksð Þ

2ĤR sin k 2l þ sð Þð Þ � sin 2klð Þ � Ĥ
2

R þ Ĥ
2

I

� �
sin 2k l þ sð Þð Þ

1þ Ĥ
2

R þ Ĥ
2

I � 2ĤR cos ksð Þ � 2ĤI sin ksð Þ

2
66666664

3
77777775
. (5)

In this form, the two variates of the reflection are functions of five input variates, ĤR, ĤI , l, s, and k. The
frequency response function is also treated as two variates instead of a single quantity. The corresponding
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form for the normalized specific acoustic impedance is

x ¼
y

w

" #
¼

1� R2
R � R2

I

1� RRð Þ
2
þ R2

I

2RI

1� RRð Þ
2
þ R2

I

2
66664

3
77775. (6)
3. Two-microphone method uncertainty analysis

Previous studies of the error sources for the two-microphone method have focused on determining a
general scaling of the error and an experimental design that minimizes such errors with the use of a
Gaussian input signal. Seybert and Soenarko found that the bias error in the frequency response function due
to spectral leakage can be minimized by using a small value for the bin width of the spectral analysis [9].
Spectral leakage can be eliminated by using a periodic input signal. They also found that locating the
microphones too close to the specimen introduced bias and random errors that are a function of the mea-
sured coherence. To increase the coherence, the microphones should be placed close together, but the
coherence will always be low when one of the microphone locations coincides with a node in the standing
wave pattern. One of the most important findings was that when the value of s approaches an integer
number of half-wavelengths, the error was increased dramatically. Bodén and Åbom expanded on these
results and found that the bias error of the frequency response function estimate was impacted by the
overall length of the waveguide, how reflective the specimen was, and the location of the microphones
relative to the specimen [8]. The random error was a function of the coherence and was influenced by the
value of the reflection coefficient, outside noise sources, and the value of ks. They suggest satisfying
0.1pokso0.8p to keep the overall error low. In combination with their second study [7], they concluded
that errors in the microphone locations dominated over (1) spatial averaging effects, (2) any offset the
acoustic center has from its assumed location at the geometric center, and (3) any effects from the finite
impedance of the microphones themselves. Other researchers have investigated the use of methods
based on the use of multiple microphone locations to reduce the random error by using a least-squares
method [5,17].

The results from the previous studies provide the necessary guidance to quantify and minimize component
error sources that, together with the multivariate uncertainty and the Monte Carlo methods, can be used to
provide 95% confidence intervals. The multivariate method propagates the uncertainty estimates through any
data reduction equation [11,12,18–21] by using

sy ¼ JsxJ
T, (7)

where sy is the sample covariance matrix of the output variable, sx is the sample covariance matrix of the input
variates, J is the Jacobian matrix for the data reduction equation, and the superscript T indicates the
transpose. With the sample covariance matrix of the variable, the 95% confidence region is found from the
probability statement [22]

Prob x� x̄ð Þs�1x x� x̄ð Þ �
neffp

neff þ 1� p
F p;neffþ1�p;a

� �
¼ 1� a, (8)

where x is a vector representing the multivariate variable, x̄ is the sample mean vector, sx is the sample
covariance matrix of the mean, F p;neffþ1�p;a is the statistic of the F distribution with p variates (two for a
complex variable), neff þ 1� p degrees of freedom for a probability 1�a, and neff is the effective number of
degrees of freedom from the measurements [21]. If the entire confidence region is not desired, the confidence
level estimates of the uncertainty for the nth variate, Un, can be computed from the equation

Un ¼ kcfun, (9)
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where un is the estimate of the sample standard deviation for the nth output variate (i.e., the square root of the
diagonal elements of sy), and kcf is the coverage factor given by

kcf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
neffp

neff þ 1� p
F p;neffþ1�p;a

r
. (10)

The Jacobian matrix for the reflection coefficient is

JR ¼

qRR

qĤR

qRR

qĤI

qRR

ql

qRR

qs

qRR

qT

qRI

qĤR

qRI

qĤI

qRI

ql

qRI

qs

qRI

qT

2
6664

3
7775, (11)

where, in this model, the wavenumber is treated solely as a function of temperature. The Jacobian matrix for
the normalized specific acoustic impedance is

Jx ¼

qy
qRR

qy
qRI

qw
qRR

qw
qRI

2
6664

3
7775. (12)

A Monte Carlo method is also used to compute the uncertainties of the reflection coefficient and the
acoustic impedance ratio. The Monte Carlo method involves assuming distributions for all of the input
uncertainties and then randomly perturbing each input variable with a perturbation drawn from its
uncertainty distribution [23]. The assumed distributions will be multivariate distributions if the input variates
are correlated. Now, the perturbed input variates are used to compute the outputs, in this case R and x. This is
repeated until the distribution of the output variable has converged, and then the output distributions are used
to estimate the sample covariance matrix and the 95% confidence regions. A summary of the uncertainty
sources is given in Table 1.

3.1. Frequency response function estimate

Estimates of the uncertainty and error sources in the frequency response function are documented in
Refs. [9,16,24–27]. For this paper, two uncorrelated noise sources are assumed to affect a single-input/
Table 1

Elemental bias and precision error sources for the two-microphone method

Variable or origin Error source Error estimator

T RTD accuracy Manufacturer’s specifications or calibration accuracy

Ambient temporal variations Minimize by conducting the test in limited amount of time

Spatial variations Characterize by measuring the temperature at different locations along the waveguide

Random variations Statistical methods

s, l Caliper accuracy Manufacturer’s specifications or calibration accuracy

Random variation Statistical methods

Microphones Spatial averaging Minimize using microphones with a diameter much smaller than the wavelength

Impedance change Minimize using microphones with a diameter much smaller than the wavelength

Ĥ Phase mismatch Correct for by using microphone switching

Magnitude mismatch Correct for by calibrating each microphone and microphone switching

A/D limitations Minimize by maximizing the significant bits

Finite frequency resolution Not present for a periodic random input signal

Random error Sample covariance matrix given in Ref. [12]
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single-output system with a periodic and deterministic input signal, as described in Ref. [12]. Also from
Ref. [12], the frequency response function estimate is

ĤR

ĤI

" #
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĝ22

Ĝ11 Ĉ
2

12 þ Q̂
2

12

� �
vuut Ĉ12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĝ22

Ĝ12 Ĉ
2

12 þ Q̂
2

12

� �
vuut Q̂12

2
66666664

3
77777775
, (13)

where Ĝ11 and Ĝ22 are the autospectral densities of the signals from microphones 1 and 2, respectively, and
Ĉ12 and Q̂12 are, respectively, the co- and quad-spectral density functions (i.e., Ĝ12 ¼ Ĉ12 þ jQ̂12). Eq. (13) is
commonly called the Ĥ3 estimate. Any phase bias can be eliminated by using a switching technique, described
in Ref. [12]. The final estimate of the frequency response function is computed from the geometric average of
the two interchanged measurements as

Ĥ ¼

ffiffiffiffiffiffiffiffi
Ĥ

O

Ĥ
S

vuut
, (14)

where Ĥ
O
and Ĥ

S
are the frequency response function between the microphones in their original and their

interchanged locations, respectively.
The details of the estimate of the frequency response function for this system model are given in Ref. [12].

The sample covariance matrix for Ĥ3 and the Jacobian matrix needed to propagate the uncertainty to the
averaged frequency response function are given in Ref. [12] and are summarized in Appendix of this paper.
The uncertainty estimation requires an additional measurement with the pseudo-random source turned off to
estimate the noise power spectral density.

The reflection coefficient’s sensitivity to uncertainty in the frequency response function is described by

qRR

qĤR

¼ 2
cos k 2l þ sð Þð Þ � ĤR cos 2k l þ sð Þð Þ þ RR cos ksð Þ � ĤR

� �
1þ Ĥ

2

R þ Ĥ
2

I � 2ĤR cos ksð Þ � 2ĤI sin ksð Þ
, (15)

qRR

qĤI

¼ 2
�ĤI cos 2k l þ sð Þð Þ þ RR sin ksð Þ � ĤI

� �
1þ Ĥ

2

R þ Ĥ
2

I � 2ĤR cos ksð Þ � 2ĤI sin ksð Þ
, (16)

qRI

qĤR

¼ 2
sin k 2l þ sð Þð Þ � ĤR sin 2k l þ sð Þð Þ þ RI cos ksð Þ � ĤR

� �
1þ Ĥ

2

R þ Ĥ
2

I � 2ĤR cos ksð Þ � 2ĤI sin ksð Þ
(17)

and

qRI

qĤI

¼ 2
�ĤI sin 2k l þ sð Þð Þ þ RI sin ksð Þ � ĤI

� �
1þ Ĥ

2

R þ Ĥ
2

I � 2ĤR cos ksð Þ � 2ĤI sin ksð Þ
. (18)

Considering the case when ks ¼ np leads to Ĥ ¼ ð�1Þn. As a result, the common denominator in
Eqs. (15)–(18) equals zero, resulting in a singularity so that any uncertainty in the frequency response function
will result in a large uncertainty in the reflection coefficient. This result agrees with those reported in previous
studies [7–9].

From Eqs. (15)–(18) it can be seen that the sensitivity to the uncertainty in Ĥ is dependent on the value of Ĥ

and R. As Ĥ approaches the limiting values of zero or infinity (i.e., when one of the microphones is located at
a node), or as the magnitude of R approaches the limit of unity, the sensitivity will increase. This implies that
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the accurate measurement of the two extremes, sound-hard (R ¼ 1) and pressure release (R ¼ �1) boundaries
that possess cusps in the standing wave patterns, possess the largest sensitivities to uncertainty.
3.2. Microphone locations

In this section the effects of the uncertainty of the microphone locations on the reflection coefficient are
addressed. The respective sensitivity coefficients for the distance between the specimen and the closest
microphone l and for the microphone spacing s are:

qRR

ql
¼ �2kRI , (19)

qRI

ql
¼ 2kRR, (20)

qRR

qs
¼ �2k

ĤR sin k 2l þ sð Þð Þ � Ĥ
2

R þ Ĥ
2

I

� �
sin 2k l þ sð Þð Þ þ RR ĤR sin ksð Þ � ĤI cos ksð Þ

� �
1þ Ĥ

2

R þ Ĥ
2

I � 2ĤR cos ksð Þ � 2ĤI sin ksð Þ
(21)

and

qRI

qs
¼ 2k

ĤR cos k 2l þ sð Þð Þ � Ĥ
2

R þ Ĥ
2

I

� �
cos 2k l þ sð Þð Þ � RI ĤR sin ksð Þ � ĤI cos ksð Þ

� �
1þ Ĥ

2

R þ Ĥ
2

I � 2ĤR cos ksð Þ � 2ĤI sin ksð Þ
. (22)

The sensitivity coefficients for l and s are both directly proportional to the frequency via the wavenumber,
emphasizing the difficulty of making accurate measurements at high frequency. Eqs. (21) and (22) have the
same denominator as Eqs. (15)–(18), again showing that half-wavelength spacing ks ¼ np should be avoided.
3.3. Temperature

The random uncertainty in the temperature measurement can be handled by using standard statistical
procedures. The effects of temporal variations in the atmospheric conditions can be minimized by limiting the
duration of the test. The spatial variation in the temperature of the waveguide can be characterized by
measuring the temperature at various locations and computing the standard deviation of the measurements.
The temperature sensor for this study is mounted on the exterior wall to avoid undesired reflections and
scattering of the sound field inside the waveguide, and is found to give reliable estimate of the gas temperature
if the wall is highly conductive. The total uncertainty in temperature is estimated from the root-sum-square of
the individual uncertainties.

The sensitivity coefficients of the reflection coefficient with respect to temperature are computed by using
the chain rule

qRR

qT
¼

qRR

qk

qk

qT
(23)

and

qRI

qT
¼

qRI

qk

qk

qT
, (24)

where

qRR

qk
¼ 2s
�A sin k 2l þ sð Þð Þ þ

l

s
sin 2klð Þ þ B sin 2k l þ sð Þð Þ � C

1þ Ĥ
2

R þ Ĥ
2

I � 2ĤR cos ksð Þ � 2ĤI sin ksð Þ
, (25)
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qRI

qk
¼ 2s

A cos k 2l þ sð Þð Þ �
l

s
cos 2klð Þ � B cos 2k l þ sð Þð Þ � C

1þ Ĥ
2

R þ Ĥ
2

I � 2ĤR cos ksð Þ � 2ĤI sin ksð Þ
, (26)

with

A ¼ 1þ 2
l

s

� �
ĤR, (27)

B ¼ 1þ
l

s

� �
Ĥ

2

R þ Ĥ
2

I

� �
(28)

and

C ¼ RR ĤR sin ksð Þ � ĤI cos ksð Þ
� �

. (29)

Eqs. (25)–(29) reveal that the uncertainty in R is approximately proportional to the microphone spacing.
Reducing the spacing between the microphones will reduce the sensitivity of the uncertainty in the reflection
coefficient with respect to the wavenumber and hence, the temperature. Also, Eqs. (25) and (26) possess the
same singularity as the other derivatives at ks ¼ np.

For the case with dispersion and dissipation, the complex wavenumber is a function of the thermodynamic
state (ambient temperature and pressure), the frequency, and the waveguide geometry [13,28]. The scaling of
the uncertainty in R accounting for these effects is difficult to examine analytically. If dissipation and
dispersion are neglected and an ideal gas is assumed, the wavenumber is given by Eq. (2) and is only a function
of temperature. Thus, the derivative of the wavenumber with respect to temperature is

qk

qT
¼ �k

gRgas

� �
2c20

. (30)

From Eq. (30) it can be seen that the uncertainty will increase with frequency via the wavenumber and that the
uncertainty is inversely proportional to the square of the speed of sound.

3.4. Normalized acoustic impedance uncertainty

For the uncertainty analysis, the normalized specific acoustic impedance is treated as solely a function of the
reflection coefficient. The Jacobian matrix is

Jx ¼

2 1� RRð Þ
2
� R2

I

� �
1� RRð Þ

2
þ R2

I

� �2 �4RI 1� RRð Þ

1� RRð Þ
2
þ R2

I

� �2
4RI 1� RRð Þ

1� RRð Þ
2
þ R2

I

� �2 2 1� RRð Þ
2
� R2

I

� �
1� RRð Þ

2
þ R2

I

� �2

2
666664

3
777775. (31)

Notice that each term has the same denominator and a singularity exists for a sound-hard boundary, R ¼ 1.
This situation will be studied further in the section below.

4. Numerical simulations

Much of the observations in Section 3 have been previously reported in Ref. [7–9]. The main contribution of
this paper is to demonstrate how these uncertainty sources propagate and contribute to the overall uncertainty
in R if they remain linear. It will be shown that for typical experimental situations, the uncertainties cause
nonlinear perturbations in the reflection coefficient and acoustic impedance. In order to demonstrate the
uncertainty propagation, numerical experiments on a sound-hard boundary and an ‘‘ideal’’ impedance sample
are carried out by using the analytical method outlined in Section 3. From the results of these numerical
experiments the overall uncertainty is estimated.



ARTICLE IN PRESS

Table 2

Nominal values for the input parameters for the numeric simulations

Parameter Value

l 32.1mm

s 20.6mm

T 23.8 1C

T. Schultz et al. / Journal of Sound and Vibration 304 (2007) 91–109 99
Time-series data are simulated by using Eq. (1) with a desired value of R, and the resulting data are
processed by using the algorithms described in Section 3. The nominal values for the input parameters are
given in Table 2. The numerical simulations are preformed for a single test frequency of 5 kHz (ks ¼ 0.60p).
This frequency is chosen because the uncertainties are bounded for these microphone locations. A parametric
study of the effects of sensor signal-to-noise ratio (SNR) and uncertainties in temperature, microphone
location, and spacing are studied in isolation assuming the perturbations remain linear. The relative
uncertainties in the temperature, microphone location, and spacing are independently varied from 0.1% to
10% at a single frequency while the other uncertainties are set to zero and the input signal is noise free. The
effect of the signal-to-noise ratio is studied by varying it from 30 to 70 dB while holding the other uncertainties
to zero. The signal-to-noise ratio for the numerical simulations is based on comparing the power in the
incident wave at a particular frequency to the power in the noise signal at that same frequency, and is kept
constant across the entire bandwidth. Next, the total uncertainty in R as a function of frequency is estimated
from the case with the relative input uncertainties of 0.01% and 1% for a signal-to-noise ratio of 40 dB. The
estimated 95% confidence intervals are then compared to the results of the Monte Carlo simulation where
25,000 iterations are used to estimate the sample covariance matrix. All the variables are assumed to be
normally distributed for the Monte Carlo simulation and the real and imaginary parts of the frequency
response functions are assumed to be correlated, as shown in Ref. [12].

The simulations used either a zero-mean periodic random signal for a broadband periodic source or a sinusoid
for single-frequency excitation. The sampling rate is 51.2 kHz and the bandwidth chosen for the broadband
simulations is 0–20kHz. Spectral estimation is carried out by segmenting the data into 1000 blocks each
containing with 1024 samples, and using these blocks to calculate sample spectral density estimates. This yields a
frequency resolution of 50Hz. In these simulations, the microphone spacing is not designed to avoid the
situation where ks ¼ np or to maintain the inequality 0.1pokso0.8p [7]. This is acceptable since the goal of the
simulations is to demonstrate that the uncertainty analysis methods presented earlier capture the correct
behavior. In an actual experiment, multiple microphone spacings can be used to avoid the regions where ksEnp.

4.1. Sound-hard sample

The first specimen studied is a sound-hard boundary. To avoid the singularity present in the data reduction
and uncertainty expressions, the assumed value of the reflection coefficient is R ¼ 0.999, which gives a
standing wave ratio (the ratio of the maximum to the minimum pressure amplitude in the axial direction of the
plane-wave tube) of greater than 60 dB. In Fig. 2, is shown the absolute uncertainty in the reflection coefficient
as a function of the individual uncertainty in l, s and T at 5 kHz. In Fig. 3, is shown the absolute uncertainty in
the reflection coefficient solely as a function of the signal-to-noise ratio. The results shown in Figs. 2 and 3 can
be compared to determine the dominant source of uncertainty by determining which individual source causes
the maximum uncertainty in the reflection coefficient. From the results in these figures it appears that the
dominant source of uncertainty in the magnitude of the reflection coefficient is the random uncertainty in the
frequency response function measurement for signal-to-noise ratios of 50 dB or lower. The dominant source of
uncertainty in the phase of the reflection coefficient is in the measurement of the distance between the
specimen and the nearest microphone. Improvements in the measurement of the reflection coefficient could be
obtained from improvements in the accuracy of the frequency response function measurements (reducing the
noise in the system, increasing the number of averages in the estimation) and the measurement of the distance
between the specimen and the nearest microphone.
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The estimated value of the reflection coefficient with the relative uncertainty in the measurement of the
microphone location, the microphone spacing, and the temperature each set to 1% and with a signal-to-noise
ratio of 40 dB is given in Figs. 4(a) and (b) as a function of frequency. The uncertainty results for the
multivariate method and the Monte Carlo simulation are shown in Figs. 4(c) and (d). The results form the
multivariate method are in agreement with those from the Monte Carlo simulation and are within 5% for all
frequencies except those corresponding to a node in the standing wave at a microphone location or the
singularity where ksEnp; these results validate the use of the multivariate method for very small component
errors. The true value only fell outside the estimated 95% confidence region for both the multivariate method
and the Monte Carlo simulation five times for the magnitude, and zero times for the phase, out of the total 400
frequency bins. The results from these two methods also match at lower values of the input uncertainty, but
such agreement is not universal for all acoustic materials, which is shown in the next section.
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4.2. Ideal impedance model

The second simulation corresponds to the ideal impedance model given in Fig. 37 of the NASA report CR-
1999-209002 [29] designed by using Boeing’s Multi–Element Lining Optimization (MELO) program. The data
provided in the NASA report is limited to a frequency range of 500Hz–10 kHz and is extended to the
frequency range needed for this simulation by assuming that the first and last values are constant for the
ranges of 0–500Hz and 10–20 kHz, respectively. The exact reflection coefficient and normalized impedance
data are given in Fig. 5. This specimen is chosen to determine the extent to which the uncertainties in a typical
liner specimen scale in a similar manner to that of a sound-hard boundary. The primary distinction between
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the two cases is that there are no nodes in the standing wave pattern for this impedance sample. As a result, the
coherence between the two microphone signals is expected to be near unity for all frequencies assuming a
reasonable signal-to-noise ratio.

In Figs. 6(a) and (b) is shown the absolute uncertainty in the reflection coefficient as a function of the
individual uncertainty in l, s, and T at 5 kHz and in Figs. 6(c) and (d) is shown the absolute uncertainty in the
normalized acoustic impedance. The absolute uncertainty in the reflection coefficient solely as a function of
the signal-to-noise ratio is shown in Figs. 7(a) and (b), and in Figs. 7(c) and (d) the absolute uncertainty in the
normalized acoustic impedance is shown. Again, the results in Figs. 6 and 7 can be compared to determine
which component uncertainty dominates the uncertainty in the reflection coefficient or normalized acoustic
impedance. From the results in these figures, it appears that the dominant sources of uncertainty in the
magnitude and the phase of the reflection coefficient are the microphone location and spacing. In contrast to
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the sound-hard boundary, there is no dominating uncertainty source for the total uncertainty in the ideal
impedance model data.

The estimated value of the reflection coefficient for the case with a signal-to-noise ratio of 40 dB is included
in Figs. 5(a) and (b). The estimates for the normalized acoustic impedance are included in Figs. 5(c) and (d).
The uncertainty results for the multivariate method and the Monte Carlo simulation are shown in Figs. 8(a)
and (b) for the reflection coefficient and in Figs. 8(c) and (d) for the normalized acoustic impedance. The
average percent difference between the two methods is 5% for both the magnitude and phase for the reflection
coefficient for the case with only 0.01% relative uncertainty in l, s, and T and 2% for the normalized resistance
and reactance. For the case with 1% relative uncertainty in l, s, and T, large differences can be seen in the
estimate of the uncertainty in the magnitude of the reflection coefficient at frequencies below 6 kHz. The
multivariate method does not reproduce the local minima that the Monte Carlo simulations reveal, but the
multivariate method estimates are conservative for this case. The average percent difference between the
results from the two methods increases to 75% for the magnitude of the reflection coefficient, 14% for the
phase of the reflection coefficient, 13% for the normalized resistance, and 16% for the normalized reactance.
These increases demonstrate that uncertainties in l, s, and T are causing nonlinear perturbations in both the
reflection coefficient and the normalized acoustic impedance for the case with only 1% relative uncertainty.
Thus, the multivariate method fails to give accurate values of the true uncertainty estimates. To increase the
accuracy of the multivariate method, the multivariate Taylor series used in the derivations could be expanded
to include as many terms as needed for the desired accuracy. The best option is to use numerical techniques
such as the Monte Carlo simulations used in this paper to propagate the uncertainty.

The probability density function is plotted to investigate the differences between the multivariate method
and the Monte Carlo simulations for large uncertainties. This is done for the normalized acoustic impedance
data and for a frequency of 5 kHz where there is a large difference between the results from the two methods
and by choosing this frequency complications due to the microphone spacing (see Fig. 8) are avoided. In
Figs. 9(a) the confidence region contours for the case with only 0.01% relative uncertainties in l, s, and T, are
shown and the corresponding results with 1% relative uncertainties are shown in Fig. 9(b). As the
uncertainties become larger and cause nonlinear perturbations in the data reduction equation, the confidence
region contours change from a normal distribution to an irregular ‘‘boomerang-shaped’’ distribution. Thus,
the nonlinear effect invalidates the normal distribution assumption and the uncertainty must be found from
the actual computed distribution resulting from the Monte Carlo simulation. In general, the uncertainty
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cannot be approximated by the sample mean vector and the sample covariance matrix. The contour line in the
joint probability density function that represents a probability of 0.95 should be found and used as the 95%
confidence region estimate for the uncertainty.

To find the uncertainty in the resistance and reactance due to 1% relative uncertainty in each input variable,
25,000 iterations from the Monte Carlo simulation are used to estimate the joint probability density function
which is approximated by discretizing the range of the resistance and reactance into 40 bins each, for a total of
1600 bins, and is smoothed by using a 2 bin � 2 bin kernel. Next, 100 contours of constant joint probability
density are found so that it can be integrated within each contour to find the total probability within that
contour. Next, the contour corresponding to 95% coverage is found via interpolation. The quoted uncertainty
is then taken as the maximum and minimum values of the contour for each component, such as the resistance
and reactance. For the case of the ideal impedance model with 1% relative uncertainty and a signal-to-noise
ratio of 40 dB for the frequency 5 kHz, the 95% confidence region is given in Fig. 10, along with the estimated
95% confidence region from the multivariate method and the estimated and true values of the normalized
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impedance. This figure illustrates the difference in the predicted uncertainty regions between the two methods
and how much larger the Monte Carlo region is. The quoted uncertainty for this case is best given as a range
since it is asymmetrical about the estimate. The estimate of the normalized resistance is 2.20 with a 95%
confidence interval of [2.11,2.23] and the estimate of the reactance is 0.1 with a 95% confidence interval of
[�0.3,0.4]. For comparison, the uncertainty estimates from the multivariate method are 70.03 for the
resistance and 70.4 for the reactance.
5. Experimental data analysis

The multivariate method and the Monte Carlo method are now demonstrated on experimental data for a
ceramic honeycomb test specimen with a porosity of 73%. The specimen has been demonstrated to be a linear
material [5]. The specimen is 51mm long and is encased in 12.7mm-thick aluminum, except for the 25.4mm by
25.4mm test face, to prevent the loss of acoustic energy from the sides of the specimen.
5.1. Experimental setup

A schematic of the experimental setup is shown in Fig. 1. The waveguide used in this experiment has a cross-
section of 25.4mm� 25.4mm and a usable frequency range of 0.5–6.7 kHz. The acoustic pressure signals are
measured by using two Brüel and Kjær Type 4138 microphones and a Brüel and Kjær Pulse Analyzer data
acquisition system. The two microphone signals are sampled at a rate of 16,384Hz with a record length of
0.125 s and a total of 1000 spectral averages are used in the estimation. A periodic pseudo-random excitation
signal is generated by the Pulse system and amplified with a Techron Model 7540 power amplifier before
application to the BMS H4590P compression driver. The microphones are calibrated with a Brüel and Kjær
Type 4228 Pistonphone. The excitation signal is applied, and the amplifier gain is adjusted such that the sound
pressure level at the reference microphone is approximately 120 dB (ref. 20 mPa) for all frequency bins. Then
the full-scale voltage on the two measurement channels of the Pulse system is adjusted to maximize the
dynamic range of the data system. The excitation signal is turned off and the microphone signals are measured
to estimate the noise spectra [12]. The input and output signals for the frequency response function estimation
are assumed to contain uncorrelated noise and the real and imaginary parts of the frequency response function
may be correlated as shown in Ref. [12]. Next, the excitation signal is turned on and the two microphone
signals are recorded with the microphones in their original positions and switched positions. The time-series
data are used to compute the required spectra and ultimately Ĥ, R, and x via Eqs. (14), (3) and (4),
respectively.

The ambient gas temperature is measured by using a surface-mounted platinum RTD (Omega SRTD-1).
The random uncertainty is estimated from the standard deviation of 100 measurements, and the bias
uncertainty is estimated by using the reported accuracy of the RTD (2K). The total uncertainty in
temperature is computed from the root-sum-square of the random and bias uncertainties.

The location of the microphone, l, and the microphone spacing, s, is measured before the experiment by
using digital calipers. The measurement is repeated 45 times and the data are used to compute the estimates of
the mean and standard deviation of the microphone location and spacing measurements. These are used to
construct the corresponding 95% confidence intervals for the microphone location and spacing. The
microphone located closest to the specimen is located 32.070.8mm from the specimen and the spacing
between the two microphones is 20.771.1mm.

The uncertainty in the reflection coefficient and the measured normalized acoustic impedance is estimated
by using both the multivariate method and a Monte Carlo simulation (see Fig. 11). The input distributions for
l, s, and T are assumed to be independent Gaussian distributions and the input distribution for Ĥ is assumed
to be a bivariate normal distribution computed from Ref. [12]. A specific form for the output distribution of
the Monte Carlo simulation is not assumed as described previously at the end of Section 4. This approach is
chosen because of its ability to handle the large perturbations that the uncertainties in the temperature and the
microphone locations represent and to demonstrate once again that the multivariate method can only provide
approximate uncertainty estimates.
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5.2. Results

The coherence between the two microphones for both the original and switched positions is above 0.99 for
the entire bandwidth. The estimated reflection coefficient and normalized acoustic impedance are given in Fig.
12(a)–(d), together, with the corresponding uncertainty estimates. The two uncertainty estimates agree well
with each other for the magnitude and phase of the reflection coefficient except around 5.55 kHz. The two
uncertainty estimates for the normalized acoustic impedance only agree well with each other in a limited
frequency range and exhibit large differences near 6 kHz for this case. Also, the asymmetrical uncertainty
estimates at higher frequencies in the Monte Carlo simulation results are easily seen in Figs. 12(c) and (d). For
example, at 5.996 kHz the normalized acoustic impedance estimate is 4.5–j0.6, but the uncertainty estimate for
the normalized resistance is [3.9,5.1] for the multivariate method and [2.7,5.1] for the Monte Carlo simulation,
and for the normalized reactance is [�3.6,2.4] for the multivariate method and [�2.7,1.6] for the Monte Carlo
simulation.

6. Conclusions

This paper demonstrated the multivariate uncertainty analysis technique and the Monte Carlo methods for
estimating the experimental uncertainties in acoustic impedance using the two-microphone method. When all
of the component uncertainties are very small (51%) or the specimen is sound hard, the multivariate method
predictions match the results from Monte Carlo method. When the component uncertainties are at levels
typically found in current experimental configurations, they are large enough to violate the assumption of
linearity inherent in the multivariate method. Hence, the perturbations caused on the output are nonlinear
functions of component uncertainties and the output probability distribution is not Gaussian. The distortion
of the output probability distribution is thus a function of the acoustic impedance of the specimen itself. To
estimate the uncertainty accurately in these situations, the actual probability density function must be
estimated numerically from Monte Carlo simulations and integrated. This tends to increase the complexity of
the uncertainty analysis program and requires more computation time than the multivariate method. This
Monte Carlo method was demonstrated and applied to experimental data for a ceramic tubular material and
the results were compared against those from the multivariate method. The Monte Carlo results demonstrated
the potential for asymmetric uncertainty estimates. In general, large differences can exist between the two
methods and therefore the general Monte Carlo method is recommended for accurate uncertainty estimates.
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The main contribution of this paper is thus a verified systematic framework to estimate frequency dependent
uncertainties in the complex reflection and normalized acoustic impedance calculations. Presumably, this tool
will be useful to assess the suitability of candidate acoustic liner materials. The MATLABs computer code for
performing the two-microphone method and uncertainty analysis is available from the authors.
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Appendix

The details of the uncertainty for the Ĥ3 estimate are provided in this appendix. These results are from
Ref. [12], where a full discussion of uncertainty for frequency response functions can be found. The system
model with uncorrelated input/output noise is shown in Fig. 13 and the expression for Ĥ3 was given in
Eq. (13). The sample covariance matrix for Ĥ3 is
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where c ¼ ĜnnĜxx þ ĜmmĜyy � ĜmmĜnn, Ĝmm is an estimate of the power spectral density of the input noise
signal, and Ĝnn is an estimate of the power spectral density of the output noise signal. The Jacobian matrix for
Ĥ3 is
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Ĝyy
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Ĝxy

			 			3
ffiffiffiffiffiffiffiffi
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where jĜxyj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĉ

2

xy þ Q̂
2

xy

q
. The standard uncertainty in Ĥ3 is found by propagating the sample covariance

matrix in Eq. (32) by using the propagation equation, Eq. (7), and using the techniques described in Section 3
to estimate the confidence region.
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